Velocity analysis example: 4-bar mechanism

Example 1: find ω_{4} if you know that $\omega_{2}=1500 \mathrm{rpm}$ CCW

All dimensions are in mm

Solution:-

The vector loop equation is:

$$
V_{2}+V_{3}=V_{4}
$$

$V_{2}=\omega_{2} d_{2}=1500 * \frac{2 \pi}{60} * 51.7=8121 \frac{\mathrm{~mm}}{\mathrm{sec}}$

- Assume that each $200 \mathrm{~mm} / \mathrm{sec}=1 \mathrm{~mm}$ on the drawing. So, $V_{2}=406 \mathrm{~mm}=40.6 \mathrm{~cm}$ on the drawing
- Construct V_{2} as sown in figure

- Now construct the line that represent vector V_{3}. As you can see, you can take extension line from d_{3}.

Now, construct V_{4} :

- Draw the vectors V_{3} and V_{4} and measure them (in cm) using a ruler

Now $\mathrm{V}_{4}=19.9 \mathrm{~cm}$ which means

$$
V_{4}=19.9 \mathrm{~cm} * 20=398 \frac{\mathrm{~cm}}{\mathrm{sec}}=3980 \frac{\mathrm{~mm}}{\mathrm{sec}}
$$

But $V_{4}=\omega_{4} \cdot d_{4}$. $d 4$ can be found from the figure as 57 mm . so

$$
\omega_{4}=\frac{V_{4}}{d_{4}}=\frac{3980 \mathrm{~mm} / \mathrm{sec}}{57 \mathrm{~mm}}=69.8 \mathrm{rad} / \mathrm{sec}=666 \mathrm{RPM}
$$

